
Building an Xbox 360 Emulator, part 1: 
Feasibility/CPU 

Questions 
Emulators are complex pieces of software and often push the bounds of what’s possible by nature of 
having to simulate different architectures and jump through crazy hoops. When talking about the 360 
this gets even crazier, as unlike when emulating an SNES the Xbox is a thoroughly modern piece of 
hardware and in some respects is still more powerful than most mainstream computers. So there’s the 
first feasibility question: is there a computer powerful enough to emulate an Xbox 360? (sneak 
peak: I think so) 

Now assume for a second that a sufficiently fast emulator could be built and all the hardware exists to 
run it: how would one even know what to emulate? Gaming hardware is almost always completely 
undocumented and very special-case stuff. There are decades-old systems that are just now being 
successfully emulated, and some may never be possible! Add to the potential hardware information 
void all of the system software, usually locked away under super strong NDA, and it looks worse. It’s 
amazing what a skilled reverse engineer can do, but there are limits to everything. Is there enough 
information about the Xbox 360 to emulate it? (sneak peak: I think so) 

Research 
The Xbox 360 is an embedded system, geared towards gaming and fairly specialized – but at the end of 
the day it’s derived from the Windows NT kernel and draws with DirectX 9. The hardware is all totally 
custom (CPU/GPU/memory system/etc), but roughly equivalent to mainstream hardware with a 64-bit 
PPC chip like those shipped in Macs for awhile and an ATI video chipset not too far removed from a 
desktop card. Although it’s not going to be a piece of cake and there are some significant differences 
that may cause problems, this actually isn’t the worst situation. 

The next few posts will investigate each core component of the system and try to answer the two 
questions above. They’ll cover the CPU, GPU, and operating system. 

CPU (Xenon) 
Reference: http://en.wikipedia.org/wiki/Xenon_(processor), http://free60.org/Xenon_(CPU) 

• 64-bit PowerPC w/ in-order execution and running big-endian 
• 3.2GHz 3 physical cores/6 logical cores 
• L1: 32KB instruction/32KB data, L2: 1MB (shared) 
• Each core has 32 integer, 32 floating-point, and 128 vector registers 
• Altivec/VMX128 instructions for SIMD floating-point math 
• ~96GFLOPS single-precision, ~58GFLOPS double-precision, ~9.6GFLOPS dot product 

PowerPC 

The PowerPC instruction set is RISC – this is a good thing, as it’s got a fairly small set of instructions 
(relative to x86) – it doesn’t make things much easier, though. Building a translator for PPC to x86-* is 
a non-trivial piece of work, but not that bad. There are some considerations to take into account when 
translating the instruction set and worrying about performance, highlighted below: 

• Xenon is 64-bit – meaning that it uses instructions that operate on 64-bit integers. Emulating 
64-bit on 32-bit instruction sets (such as x86) is not only significantly more code but also at 



least 2x slower. May mean x86-64 only, or letting some other layer do the work if 32-bit 
compatibility is a must. 

• Xenon uses in-order execution – great for simple/cheap/power-efficient hardware, but bad for 
performance. Optimizing compilers can only do so much, and instruction streams meant for 
in-order processors should always run faster on out-of-order processors like the x86. 

• The shared L2 cache, at 1MB, is fairly small considering there is no L3 cache. General 
memory accesses on the 360 are fast, but not as fast as the 8MB+ L3 caches commonly found 
in desktop processors. 

• PPC has a large register file at 32I/32F/128V relative to x86 at 6I/8F/8V and x86-64 at 
12I/16F&V – assuming the PPC compiler is fully utilizing them (or the game developers are, 
and it’s safe to bet they are) this could cause a lot of extra memory swaps. 

• Being big-endian makes things slightly less elegant, as all loads and stores to memory must 
take this into account. Operations on registers are fine (a lot of the heavy math where perf 
really matters), but because of all the clever bit twiddling hacks out there memory must 
always be valid. This is the biggest potentially scary performance issue, I believe. 

Luckily there is a tremendous amount of information out there on the PowerPC. There are many 
emulators that have been constructed, some of which run quite fast (or could with a bit of tuning). The 
only worrisome area is around the VMX128 instructions, but it turns out there are very few instructions 
that are unique to VMX128 and most are just the normal Altivec ones. (If curious, the v*128 named 
instructions are VMX128 – the good news is that they’ve been documented enough to reverse). 

Multi-core 

’6 cores’ sounds like a lot, but the important thing to remember is that they are hardware threads and 
not physical cores. Comparing against a desktop processor it’s really 3 hardware cores at 3.2GHz. 
Modern Core i7′s have 4-6 hardware cores with 8-12 hardware threads – enough to pin the threads used 
on a 360 to their own dedicated hardware threads on the host. 

There is of course extra overhead running on a desktop computer: you’ve got both other applications 
and the host OS itself fighting for control of the execution pipeline, caches, and disk. Having 2x the 
hardware resources, though, should be plenty from a raw computing standpoint: 

• SetThreadAffinityMask/SetThreadIdealProcessor and equivalent functions can control 
hardware threading. 

• The properties of out-of-order execution on the desktop processors should allow for better 
performance of hardware threads vs. the Xenon. 

• The 3 hardware cores are sharing 1MB of L2 on the Xenon vs. 8-16MB L3 on the desktop so 
cache contention shouldn’t happen nearly as often. 

• Extra threads on the host can be used to offload tasks that on a real Xenon are sharing time 
with the game, such as decompression. 

Raw performance 

The Xbox marketing guys love to throw around their fancy GFLOP numbers, but in reality they are not 
all that impressive. Due to the aforementioned in-order execution and the strange performance 
characteristics of a lot of the VMX128 instructions it’s almost impossible to hit the reported numbers in 
anything but carefully crafted synthetic benchmarks. This is excellent, as modern CPUs are exceeding 
the Xenon numbers by a decent margin (and sometimes by several multiples). The number of registers 
certainly helps the Xenon out but only experimentation will tell if they are crucial to the performance. 

Emulating a Xenon 
With all of the above analysis I think I can say that it’s not only possible to emulate a Xenon, but it’ll 
likely be sufficiently fast to run well. 



To answer the first question above: by the time a Xenon emulation is up to 95% compatibility the 
target host processors will be plenty fast; in a few years it’ll almost seem funny that it was ever 
questioned. 

And is there enough information out there? So far, yes. I spent a lot of nights reverse engineering the 
special instructions on the PSP processor and the Xenon is about as documented now. The Free60 
project has a decent toolchain but is lacking some of the VMX128 instructions which will make testing 
things more difficult, but it’s not impossible. 

Combined with some excellent community-published scripts for IDA Pro (which I have to buy a new 
license of… ack $$$ as much as a new MacBook) the publicly available information and some Redbull 
should be enough to get the Xbox 360 CPU running on the desktop. 

Building an Xbox 360 Emulator, part 2: 
Feasibility/GPU 

Research 
Following up from last post, which dove into the Xbox 360 CPU, this post will look at the GPU. 

GPU (Xenos) 
Reference: http://en.wikipedia.org/wiki/Xenos_(graphics_chip), http://free60.org/Xenos_(GPU) 

• ATI	  R500	  equivalent	  at	  500MHz	  
• 48	  shader	  pipeline	  processors	  
• 8	  ROPs	  –	  8-‐32	  gigasamples/second	  
• 6	  billion	  vertices/second,	  500	  million	  triangles/second,	  48	  bilion	  shader	  

ops/second	  
• Shader	  Model	  3.0+	  
• 26	  texture	  samplers,	  16	  streams,	  4	  render	  targets,	  4096	  VS/PS	  

instructions	  
• VFETCH,	  MEMEXPORT	  

The Xenos GPU was derived from a desktop part right around the time when Direct3D 10 hardware 
was starting to develop. It’s essentially Direct3D 9 with a few additions that enable 10-like features, 
such as VFETCH. Performance-wise it is quite slow compared to modern desktop parts as it was a bit 
too early to catch the massive explosion in generally programmable hardware. 

Performance 

The Xenos is great, but compared to modern hardware it’s pretty puny. Where as the Xenon (CPU) is a 
bit closer to desktop processors, the GPU hardware has been moving forward at an amazing pace and 
it’s clearly visible when comparing the specs. 

• Modern	  (high-‐end)	  GPUs	  run	  at	  800+MHz	  –	  many	  more	  
operations/second.	  

• Modern	  GPUs	  have	  orders	  of	  magnitude	  more	  shader	  processors	  
(multiplying	  the	  clock	  speed	  change).	  

• 32-‐128	  ROPs	  multiply	  out	  all	  the	  above	  even	  more.	  



• Most	  GPUs	  have	  shader	  ops	  measured	  in	  trillions	  of	  operations	  per	  
second.	  

• All	  stats	  (for	  D3D10+)	  are	  way	  over	  the	  D3D9	  version	  used	  by	  Xenos	  
(plenty	  of	  render	  targets/etc).	  

Assuming Xenos operations could be run on a modern card there should be no problem completing 
them with time to spare. The host OS takes a bit of GPU time to do its compositing, but the is plenty of 
memory and spare cycles to handle a Xenos-maxing load. 

VFETCH 

One unique piece of Xenos is the vfetch shader instruction, available from both vertex and pixel 
shaders, which gives shader programs the ability to fetch arbitrary vertex data from samplers set to 
vertex buffers. This instruction is fairly well documented because it is usable from XNA Game Studio, 
and some hardcore demoscene guy actually reversed a lot of the patch up details (available here with a 
bunch of other goodies). It also looks like you can do arbitrary texture fetches (TFETCH?) in both 
vertex and pixel shaders – kind of tricky. 

Unfortunately, the ability to sample from arbitrary buffers is not something possible in Direct3D 9 or 
GL 2. It’s equivalent to the Buffer.Load call in HLSL SM 4+ (starting in Direct3D 10). 

MEMEXPORT 

Unlike vfetch, this shader instruction is not available in XNA Game Studio and as such is much less 
documented. There are a few documents and technical papers out there on the net describing what it 
does, which as far as I can tell is similar to the RWBuffer type in HLSL SM5 (starting in Direct3D 11). 
It basically allows structured write of resource buffers (textures, vertex buffers, etc) that can then be 
read back by the CPU or used by another shader. 

This will be the hardest thing to fully support due to the lack of clear documentation and the fact that 
it’s a badass instruction. I’m hoping it has some fatal flaw that makes it unusable in real games such 
that it won’t need to be implemented… 

Emulating a Xenos 
So we know the performance exists in the hardware to push the triangles and fill the pixels, but it 
sounds tricky. VFETCH is useful enough to assume that every game is using it, while the hope is that 
MEMEXPORT is hard enough to use that no game is. There are several big open questions that need 
more investigation to say for sure just how feasible this project is: 

• Is	  it	  possible	  to	  translate	  compiled	  shader	  code	  from	  xvs_3_0/xps_3_0	  -‐>	  
SM4/5?	  (Sure…	  but	  not	  trivial)	  

• Can	  VFETCH	  semantics	  be	  implemented	  in	  SM4/5?	  (I	  think	  yes,	  from	  what	  
I’ve	  seen)	  

• Can	  MEMEXPORT	  semantics	  (whatever	  they	  are)	  be	  implemented	  in	  
SM4/5?	  

• Special	  z-‐pass	  handling	  may	  be	  needed	  (seen	  as	  ‘zpass’	  instruction)	  –	  may	  
require	  replicating	  draw	  calls	  and	  splitting	  shaders!	  

Unlike the CPU, which I’m pretty confident can be emulated, the Xenos is a lot trickier. Ignoring the 
more advanced things like MEMEXPORT for a second there is a tremendous amount of work that will 
need to be done to get anything rendering once the rest of the emulator is going due to the need to 



translate shader bytecode. The XNA GS shader compiler can compile and disassemble shaders, which 
is a start for reversing, but it’ll be a pain. 

Because of all the GPGPU-ish stuff happening it seems like for at least an initial release Direct3D 11 
(with feature level 10.1) is the way to go. I was really hoping to be cross-platform right away, but I’m 
not positive OpenGL has the necessary support. 

So after a day of research I’m about 70% confident I could get something rendering. I’m about 20% 
confident with my current knowledge that a real game that fully utilized the hardware could be 
emulated. If someone like the guy who reversed the GPU hardware interface decided to play around, 
though, that number would probably go up a lot ^_^ 

Building an Xbox 360 Emulator, part 3: 
Feasibility/OS 

Research 
The final part of the research phase (previously: CPU, GPU), this post discusses what it would take to 
emulate the OS on the 360. 

I’ve decided to name the project Xenia, so if you see that name thrown around that’s what I’m referring 
to. I thought it was cute because of what it means in Greek (think host/guest as common terms in 
emulation) and it follows the Xenon/Xenos naming of the Xbox 360. 

Xbox Operating System 
Reference: xorloser’s x360_imports, Wine, MSDN, ReactOS, various forum posts 

The operating system on the Xbox 360 is commonly thought to be a paired down version of the 
Windows 2000 kernel. Although it has a similar API, it is in fact a from-scratch implementation. The 
good news is that even though the implementation differs (although I’m sure there’s some shared code) 
the API is really all that matters and that API is largely documented and publicly reverse engineered. 

Cross referencing some disassembled executables and xorloser’s x360_imports file, there’s a fairly 
even split of public vs. private APIs. For every KeDelayExecutionThread that has nice MSDN 
documentation there’s a XamShowMessageBoxUIEx that is completely unknown. Scanning through 
many of the imported methods and their call signatures their behavior and function can be inferred, but 
others (like XeCryptBnQwNeModExpRoot) are going to require a bit more work. Some map to public 
counterparts that are documented, such as XamGetInputState being equivalent to XInputGetState. 

One thing I’ve noticed while looking through a lot of the used API methods is that many are at a much 
lower level than one would expect. Since I know games aren’t calling kernel methods directly, this 
must mean that the system libraries are actually statically compiled into the game executables. Let that 
sink in for a second. It’d be like if on Windows every single application had all of Win32 compiled into 
it. I can see why this would make sense from a versioning perspective (every game has the exact 
version of the library they built against always properly in sync), but it means that if a bug is found 
every game must be updated. What this means for an emulator, though, is that instead of having to 
implement potentially thousands of API calls there are instead a few hundred simple, low-level calls 
that are almost guaranteed to not differ between games. This simultaneously makes things easier and 
harder; on one hand, there are fewer API calls to implement and they should be easier to get right, but 
on the other hand there may be several methods that would have been much easier to emulate at a 
higher level (like D3D calls). 

Xbox Kernel (xboxkrnl.exe) 



Every Xbox has an xboxkrnl module on it, exporting an API similar to ntoskrnl on desktop Windows 
plus a bunch of additional APIs. 

It provide quite a useful set of functionality: 

• Program	  control	  
• Synchronization	  primitives	  (events,	  semaphores,	  critical	  sections)	  
• Threading	  
• Memory	  management	  
• Common	  string	  routines	  (Unicode	  comparison,	  vsprintf,	  etc)	  
• Cryptographic	  providers	  (DES,	  HMAC,	  MD5,	  etc)	  
• Raw	  IO	  
• XEX	  file	  handling	  and	  module	  loading	  (like	  LoadLibrary)	  
• XAudio,	  XInput,	  XMA	  
• Video	  driver	  (Vd*)	  

Of the 800 or so methods present there are a good portion that are documented. Even better, Wine and 
ReactOS both have most method signatures and quite a few complete implementations. 

Some methods are trivial to get emulated – for example, if the host emulator is built on Windows it can 
often pass down things like (Ex)CreateThread and RtlInitializeCriticalSection right down to the OS and 
utilize the optimized implementation there. Because the NT API is used there are a lot of these. Some 
aren’t directly exposed to user code (as these are all kernel functions) but can be passed through the 
user-level functions with only a bit of rewriting. It’s possible, with the right tricks, to make these calls 
directly on desktop Windows (it usually requires the Windows Device Driver Kit to be setup), which 
would be ideal. 

The set that looks like it will be the hardest to properly get figured out are the video methods, like 
VdInitializeRingBuffer and VdRegisterGraphicsNotification, as it appears like the API is designed for 
direct writing to a command buffer instead of making calls. This means that, as far as the emulator is 
concerned, there are no methods that can be intercepted to do useful work – instead, at certain points in 
time, giant opaque data buffers must be processed to do interesting things. This can make things 
significantly faster by reducing the call overhead between guest code (the emulated PowerPC 
instructions) and host code, but makes reverse engineering what’s going on much more difficult by 
taking away easily identifiable call sites and instead giving multi-megabyte data blobs. Ironically, if 
this buffer format can be reversed it may make building a D3D11/GL3 backend easier than if all the 
D3D9 state management had to be emulated perfectly. 

XAM/Xbox ?? (xam.xex) 

Besides the kernel there is a giant library that provides the bulk of the higher-level functionality in 
Xbox titles. Where the kernel is the tiny set of low-level methods required to build a functioning OS, 
XAM is the dumping ground for the rest. 

• Winsock/XNet	  Xbox	  Live	  networking	  
• On-‐screen	  keyboard	  
• Message	  boxes/UI	  
• XContent	  package	  file	  handling	  
• Game	  metadata	  
• XUI	  (Xbox	  User	  Interface)	  loading/rendering/etc	  
• User-‐level	  file	  IO	  (OpenFile/GetFileSize/etc)	  
• Some	  of	  the	  C	  runtime	  
• Avatars	  and	  other	  user	  information	  



This is where things get interesting. Luckily it looks like XAM is everything one can do on a 360, 
including what the dashboard and system uses to do its work (like download queues and such) and not 
all games use all of the methods: most seem to only use a few dozen out of the 3000 exports. 

In the context of getting an emulator up and running almost all of the methods can be ignored. Simple 
‘hello world’ applications link in only about 4, and the games I’ve looked at largely depend on it for 
error messages and multiplayer functionality – if the emulator starts without any networking, most of 
those methods can be stubbed. I haven’t seen a game yet that uses XUI for its user interface, so that can 
be skipped too. 

Emulating the OS 
Now that the Xbox OS is a bit more defined, let’s sketch out how best to emulate it. There are two 
primary means of emulating system software: low-level emulation (LLE) and high-level emulation 
(HLE). 

Most emulators for early systems (pre-1990′s) use low-level emulation because the game systems 
didn’t include an OS and often had a very minimal BIOS. The hardware was also simple enough (even 
though often undocumented) that it was easier to model the behavior of device registers than entire 
BIOS/OS systems – this is why early emulators often require a user to find a BIOS to work. 

As hardware grew more complex and expensive to emulate high-level emulation started to take over. In 
HLE the BIOS/OS is implemented in the emulator code (so no original is required) and most of the 
underlying hardware is abstracted away. This allows for better native optimizations of complex 
routines and eliminates the need to rip the copyrighted firmware off a real console. The downside is 
that for well-documented hardware it’s often easier to build hardware simulators than to match the 
exact behavior of complex operating systems. 

I had good luck with building an HLE for my PSP emulator as the hardware was sufficiently complex 
as to make it impossible to support a perfect simulation of it. The Xbox 360 is the same way – no one 
outside of Microsoft (or ATI or whoever) knows how a lot of the hardware in the system operates (and 
may never know, as history has shown). We do know, however, how a lot of the NT kernel works and 
can stub out or mimic things like the dashboard UI when required. For performance reasons it also 
makes sense to not have a full-on simulation of things like atomic primitives and other crazy difficult 
constructs. 

So there’s one of the first pinned down pieces of the emulator: it will be a high-level emulator. Now 
let’s dive in to some of the major areas that need to be implemented there. Note that these areas are 
what one would look at when building an operating system and that’s essentially what we will be 
doing. These are roughly in the order of implementation, and I’ll be covering them in detail in future 
posts. 

Memory Management 

Before code can be loaded into memory there has to be a way to allocate that memory. In an HLE this 
usually means implementing the common alloc/free methods of the guest operating system – in the 
Xbox’s case this is the NtAllocateVirtualMemory method cluster. Using the same set of memory 
routines for all internal host emulator functions (like module loading, mentioned below) as well as 
requests from game code keeps things simple and reliable. Since the NT-like API of the 360 matches 
the Windows API it means that in almost all cases the emulator can use the host memory manager for 
all its request. This ensures performance (as it can’t get any faster than that) and safety (as 
read/write/execute permissions will be enforced). Since everything is working in a sane virtual address 
space it also means that debugging things is much easier – memory addresses as visible to the emulated 
game code will correspond to memory addresses in the host emulator space. Calling host routines (like 
memcpy or video decompression libraries) require no fixups, and embedded pointers should work 
without the need for translation. 



With my PSP emulator I made the mistake of not doing this first and ended up with two completely 
different memory spaces and ways of referencing addresses. Lesson learned: even though it’s tempting 
to start loading code first, figuring out where to put it is more important. 

There are two minor annoyances that make emulating the 360 a bit more difficult than it should be: 

Big-‐Endian	  Data	  

The 360 is big-endian and as such data structures will need to be byte swapped before and after system 
API calls. This isn’t nearly as elegant as being able to just pass things around. It’s possible to write 
some optimized swap routines for specific structures that are heavily used such that they get inserted 
directly into translated code as optimally as possible, but it’s not free. 

32-‐bit	  pointers	  

On 64-bit Windows all pointers are 64-bits. This makes sense: developers want the large address space 
that 64-bit pointers gives them so they can make use of tons of RAM. Most applications will be well 
within the 4GB (or really 2GB) memory limit and be wasting 4 bytes per pointer but memory is cheap 
so no one cares. The Xbox 360, on the other hand, has only 512MB of memory to be shared between 
the OS, game, and video memory. 4 wasted bytes per pointer when it’s impossible to ever have an 
address outside the 4 byte pointer range seems too wasteful, so the Xbox compiler team did the logical 
thing and made pointers 4 bytes in their 64-bit code. 

This sucks for an emulator, though, as it means that host pointers cannot be safely round-tripped 
through the guest code. For example, if NtAllocateVirtualMemory returns a pointer that spills over 4 
bytes things will explode when that 8 byte pointer is truncated and forced into a 4 byte guest pointer. 
There are a few ways around this, none of which are great, but the easiest I can think of is to reserve a 
large 512MB block that represents all of the Xbox memory at application start and ensure it is entirely 
within the 32-bit address range. This is easy with NtAllocateVirtualMemory (if I decide to use kernel 
calls in the host) but also possible with VirtualAlloc, although not as easy when talking about 512MB 
blocks. If all future allocations are made from this space it means that pointers can be passed between 
guest and host without worrying about them being outside the allowable range. 

Executables and Modules 

Operating systems need a way to load and execute bundles of code. On the 360 these are XEX files, 
which are packages that contain a bunch of resources detailing a game as well as an embedded PE-
formatted EXE/DLL file containing the actual code. The emulator will then require a loader that can 
parse one of these files, extract the interesting content, and place it into memory. Any imports, like 
references to kernel methods implemented in the emulator, will be resolved and patched up and exports 
will be cataloged until later used. Finally the code can be submitted to the subsystem handling 
translation/JIT/etc for actual execution. 

There are a few distinct components here: 

XEX	  Parsing	  

This is fairly easy to do as the XEX file format is well documented and there are many tools out there 
that can load it. Basic documentation is available on the Free60 site but the best resource is working 
code and both the xextool_v01 and abgx360 code are great (although the abgx360 source is disgusting 
and ugly). Some things of note are that all metadata required by various Xbox API calls like 
XGetModuleSection are here, as well as fun things to pull out that the dashboard usually consumes like 
the game icon and title information. 



PE	  (Portable	  Executable)	  Parsing	  

The PE file format is how Microsoft stores its binaries (equivalent to ELF on Unix) for both 
executables and dynamically linked libraries – the only difference between an EXE and a DLL is its 
extension, from a format perspective. Inside each XEX is a PE file in the raw. This is great, as the PE 
format is officially documented by Microsoft and kept up to date, and surprisingly they document the 
entire spec including the PowerPC variant. 

A PE file is basically a bunch of regions of data (called sections); some are placed there by the linker 
(such as the TEXT section containing compiled code and DATA section containing static data) and 
others can be added by the user as custom resources (like localized strings/etc). Two other special 
sections are IDATA, describing what methods need to be imported from system libraries, and RELOC, 
containing all the symbols that must be relocated off of the base address of the library. 

Loader	  Logic	  

Once the PE is extracted from the XEX it’s time to get it loaded. This requires placing each section in 
the PE at its appropriate location in the virtual address space and applying any relocations that are 
required based on the RELOC section. After that an ahead-of-time translator can run over the 
instructions in memory and translate them into the target machine format. The translator can use the 
IDATA section to patch imported routines and syscalls to their host emulator implementations and also 
log exported code if it will be used later on. This is a fairly complex dance and I’ll be describing it in a 
future post. For now, the things to note are that the translated machine code lives outside of the 
memory space of the emulator and data references must be preserved in the virtual memory space. 
Think of the translated code and data as a shadow copy – this way, if the game wants to read itself 
(code or data) it would see exactly what it expects: PowerPC instructions matching those in the original 
XEX. 

Module	  Data	  Structures	  

After loading and translating a module there is a lot of information that needs to stick around. Both the 
guest code and the emulator will need to check things in the future to handle calls like LoadLibrary 
(returning a cached load), GetProcAddress (getting an export), or XGetModuleSection (getting a raw 
section from the PE). This means that for everything loaded from a XEX and PE there will need to be 
in-memory counterparts that point at all the now-patched and translated resources. 

Interface	  for	  Processor	  Subsystem	  

One thing I’ve been glossing over is how this all interacts with the subsystem that is doing the 
translation/JIT/etc of the PowerPC instructions. For now, let’s just say that there has to be a decent way 
for it to interact with the loader so that it can get enough information to make good guesses about what 
code does, how the code interacts with the rest of the system, and notify the rest of the emulator about 
any fixes it performs on that code. 

Threads and Synchronization 

Because the 360 is a multi-core system it can be assumed that almost every game uses many software 
threads. This means that threading primitives like CreateThread, Sleep, etc will be required as well as 
all the synchronization primitives that support multi-threaded applications (locks and such). Because 
the source API is fairly high-level most of these should be easy to pass down to the host OS and not 
worry too much about except where the API differs. 

This is in contrast to what I had to do when working on my PSP emulator. There, the Sony threading 
APIs differed enough from the normal POSIX or Win32 APIs that I had to actually implement a full 
thread scheduler. Luckily the PSP was single-core, meaning that only one thread could be running at a 
time and a lot of the synchronization primitives could be faked. It also greatly reduced the JIT 



complexity as only one thread could be generating code at a time and it was easy to ensure the 
coherency of the generated code. 

A 360 emulator must fully utilize a multi-core host in order to get reasonable performance. This means 
that the code generator has to be able to handle multiple threads executing and potentially generating 
code at the same time. It also means that a robust thread scheduler has to be able to handle the load of 
several threads (maybe even a few dozen) running at the same time with decent performance. Because 
of this I’m deciding to try to use the host threading system instead of writing my own. The code 
generator will need to be thread safe, but all threading and synchronization primitives will defer to the 
host OS. Windows, as a host, will have a much better thread scheduler than I could ever write and will 
enable some fancy optimizations that would otherwise be unattainable, such as pinning threads to 
certain CPUs and spreading out threads such that they share cores when they would have on the 
original hardware to more closely match the performance characteristics of the 360. 

Raw IO 

Unlike threading primitives the IO system will need to be fully emulated. This is because on a real 
Xbox it’s reading the physical DVD where as the emulator will be sourcing from a DVD image or 
some other file. 

Most calls found in games come in two flavors: 

Low-‐Level	  IO	  (Io*	  calls)	  

These kernel-level calls include such lovely methods as IoCreateDevice and 
IoBuildDeviceIoControlRequest. Since they are not usually exposed to user code my hope is that full 
general implementations won’t be required and they will be called in predictable ways. Most likely 
they are used to access read-only game DVD data, so supporting custom drivers that direct requests 
down to the image files should be fairly easy (this is how tools on Windows that let you mount ISOs 
work). Once things like memory cards and harddrives are supported things get trickier, but it’s not 
impossible and can be skipped initially. 

High-‐Level	  IO	  (Nt*	  calls)	  

Roughly equivalent to the Win32 file API, NtOpenFile, NtReadFile, and various other functions allow 
for easier implementation of file IO. That said, if a full implementation of the low-level Io* routines 
needs to be implemented anyway it may make sense to implement these as calls onto that layer. The 
reason is that the Xbox DVD format uses a custom file system that will need to be built and kept in 
memory and calling down to the host OS file system won’t really happen (although there are situations 
where I could it imagine it being useful, such as hot-patching resources). 

Just like the memory management functions are best to be shared throughout both guest and host code, 
so are these IO functions. Getting them implemented early means less code later on and a more robust 
implementation. 

A lot of the code for these methods can be found in ReactOS, but unfortunately they are GPL (ewww). 
That means some hack-tastic implementations will probably be written from scratch. 

Audio/Video 

Once more than ‘hello world’ applications are running things like audio and video will be required. 
Due to Microsoft pushing the XNA brand and libraries a lot of the technologies used by the Xbox are 
the same as they are on Windows. Video files are WMV and play just fine on the desktop and audio is 
processed through XAudio2 and that’s easily mappable to the equivalent desktop APIs. 



That said, the initial versions of the emulator will have to try to hard to skip over all of this stuff. 
Games are still perfectly playable without cut-scenes or music, and it’s enough to know it’s possible to 
continue on with implementation. 

Notes 
Static Linking Verification 

As mentioned above it looks like many system methods get linked in to applications at compile-time. 
To quickly verify that this is happening I disassembled some games and looked at the import for 
KeDelayExecutionThread (I figured it was super simple). In every game I looked at there was only one 
caller of this method and that caller was identical. Since KeDelayExecutionThread is essentially sleep I 
looked at the x360_imports file and found both Sleep and RtlSleep. Sleep, being a Win32 API, is most 
likely identical to the signature of the desktop version so I assumed it took 1 parameter. The parent 
method to KeDelayExecutionThread takes 2, which means it can’t be Sleep but is likely RtlSleep. The 
parent of this RtlSleep method takes exactly one parameter, sets the second parameter to 0, and calls 
down – sounds like Sleep! So then even though xboxkrnl exports Sleep, RtlSleep, and 
KeDelayExecutionThread the code for both Sleep and RtlSleep are compiled into the game executable 
instead of deferring to xboxkrnl. I have no idea why xboxkrnl exports these methods if games won’t 
use them (it would certainly make life easier for me if they weren’t there), but since it seems like no 
one is using them they can probably be skipped in the initial implementation. 

Patching high-level APIs 

Not all things are easier to emulate at a low level for both performance reasons and implementation 
quality. 

To see this clearly take memcpy, a C runtime method that copies large blocks of memory around. Right 
now this method is compiled into every game which makes it difficult to hook into, unlike 
CreateThread and other exports of the kernel. Of course it’ll work just fine to emulate the compiled 
PowerPC code (as to the emulator it’s just another block of instructions), but it won’t be nearly as fast 
as it could be. I’ll dive into this more in a future article, but the short of it is that an emulated memcpy 
will require thousands to tens of thousands of host instructions to handle what is basically a few 
hundred instruction method. That’s because the emulator doesn’t know about the semantics of the 
method: copy, bit for bit, memory block A to memory block B. Instead it sees a bunch of memory 
reads and writes and value manipulation and must preserve the validity of that data every step of the 
way. Knowing what the code is really trying to do (a copy) would enable some optimized host-specific 
code to do the work as fast as possible. 

The problem is that identifying blocks of code is difficult. Every compiler (and every version of that 
compiler), every runtime (and every version of that runtime), and every compiler/optimizer/linker 
setting will subtly or non-so-subtly change the code in the executable such that it’ll almost always 
differ. What is memcpy in Game A may be totally different than memcpy in Game B, even though they 
perform the same function and may have originated from the same source code. 

There are three ways around this: 

• Ignore	  it	  completely	  
• Specific	  signature	  matching	  
• Fuzzy	  signature	  matching	  

The first option isn’t interesting (although it’ll certainly be how the emulator starts out). 

Matching specific signatures requires a database of subroutine hashes that map to some internal call. 
When a module is loaded the subroutines are discovered, the database is queried, and matching 



methods are patched up. The problem here is that building that database is incredibly difficult – 
remember the massive number of potential variations of this code? It’s a good first step and the 
database/patching functionality may be required for other reasons (like skipping unimplemented code 
in certain games/etc), but it’s far from optimal. 

The really interesting method is fuzzy signature matching. This is essentially what anti-virus 
applications do when trying to detect malicious code. It’s easy for virus authors to obfuscate/vary their 
code on each version of their virus (or even each copy of it), so very sophisticated techniques have 
been developed for detecting these similar blocks of code. Instead of the above database containing 
specific subroutine hashes a more complex representation would allow for an analysis step to extract 
the matching methods. This is a hard problem, and would take some time, but it’d be a ton of fun. 

What Next? 
We’ve now covered the 3 major areas of the emulator in some level of detail (CPU, GPU, and OS) and 
now it’s getting to be time to write some code. Before starting on the actual emulator, though, one 
major detail needs to be nailed down: what does the code translator look like? In the next post I’ll 
experiment with a few different ways of building a CPU emulator and detail their pros and cons. 

Building an Xbox 360 Emulator, part 4: Tools and 
Information 
Before going much further I figured it’d be useful to document the setup I’ve been using to do my 
reversing. It should make it easier to follow along, and if I forget myself I’ve got a good reference. 
Note that I’m going off of publicly searchable information here – everything I’ve been doing is sourced 
from Google (and surprisingly sometimes Bing, which ironically indexes certain 360 hacking related 
information better than Google does!). 

I’ll try to update this list if I find anything interesting. 

Primary Sources 
Various Internet Searches 

There’s a wealth of information out there on the interwebs, although it’s sometimes hard to find. 
Google around for these and you’ll find interesting things… 

Most of the APIs I’ve been researching turn up hits on pastebin, providing snippets of sample code 
from hackers and what I assume to be legit developers. None of it is tagged or labeled, but the API 
names are unique enough to find exactly the right information. Most of the method signatures and 
usage information I’ve gathered so far have come from sources like this. 

PowerPC references: 

• Altivec_PEM.pdf	  /	  AltiVec	  Technology	  Programming	  Environments	  
Manual	  

• MPCFPE_AD_R1.pdf	  /	  PowerPC	  Microprocessor	  Family:	  The	  Programming	  
Environments	  

• pem_64bit_v3.0.2005jul15.pdf	  /	  PowerPC	  Microprocessor	  Family:	  The	  
Programming	  Environments	  Manual	  for	  64-‐bit	  Microprocessors	  

• PowerISA_V2.06B_V2_PUBLIC.pdf	  /	  Power	  ISA	  Version	  2.06	  Revision	  B	  



• vector_simd_pem_v_2.07c_26Oct2006_cell.pdf	  /	  PowerPC	  Microprocessor	  
Family:	  Vector/SIMD	  Multimedia	  Extension	  Technology	  Programming	  
Environments	  Manual	  

• vmx128.txt	  

GPU	  references:	  

• R700-‐Family_Instruction_Set_Architecture.pdf	  /	  ATI	  R700-‐Family	  
Instruction	  Set	  Architecture	  

• ParticleSystemSimulationAndRenderingOnTheXbox360GPU.pdf	  /	  
interesting	  bits	  about	  memexport	  

Xbox	  360	  specific:	  

• xbox360-‐file-‐reference.pdf	  /	  Xbox	  360	  File	  Specifications	  Reference	  

Free60 

• Xenon	  (CPU)	  &	  Xenos	  (GPU)	  
• Starting	  Homebrew	  Development	  (toolchain	  setup,	  LibXenon,	  etc)	  
• XEX	  file	  format	  documentation	  

The Free60 project is probably the best source of information I’ve found. The awesome hackers there 
have reversed quite a bit of the system for the commendable purpose of running Linux/homebrew, and 
have got a robust enough toolchain to compile simple applications. 

I haven’t taken the time to mod and setup their stack on one of my 360′s, but for the purpose of 
reversing and building an emulator it’s invaluable to have documentation-through-code and the ability 
to generate my own executables that are far simpler than any real game. If not for the hard work of the 
ps2dev community I never would have been able to do my PSP emulator. 

Microsoft 

There’s quite a bit of information out there if you know where to look and what to look for. Although 
not all specific to the 360, a lot of the details carry over. 

mmlite	  

Microsoft Invisible Computing is a project that has quite a bit of code in it that provides a small RTOS 
for embedded systems. What makes it interesting (and how I found it) is that it contains several files 
enabling support for PowerPC architectures. It appears as though the code that ended up in here came 
from either the same place the Xbox team got their code from, or is even the origin of some of the 
Xbox toolchain code. 

Specifically, the src/crt/md/ppc/xxx.s file has the __savegpr/__restgpr magic that tools like XexTool 
patch in to IDA dumps. Instead of guessing what all those tiny functions do it’s now possible to see the 
commented code and how it’s used. I’m sure there’s more interesting stuff in here too (possibly related 
to the CRT), but I haven’t had the need for it yet. 



DDI	  API	  

A complete listing of all Direct3D9 API calls down to driver mode, with all of the arguments to them. 
The user-mode D3D implementation on Windows provided by Microsoft calls down into this layer to 
pass on commands to the driver. On the 360, this API (minus all the fixed function calls) is the 
command buffer format! Although the exact command opcodes are not documented here, there’s 
enough information (combined with tmbinc’s code below) to ensure a somewhat-proper initial 
implementation. 

Direct3D	  Shader	  Codes	  

The details of the compiled HLSL bytecode are all laid out in the Windows Driver Kit. Minus some of 
the Xenos-specific opcodes, it’s all here. This should make the shader translation code much easier to 
write. 

DirectX	  Effect	  Compiler	  

By using the command line effect compiler (fxc.exe) it is possible to both assemble and disassemble 
HLSL for the Xenos – with some caveats. After rummaging through some games I was able to get a 
few compiled shaders and by munging their headers get the standard fxc to dump their contents (as 
most shaders are just vs_3_0 and ps_3_0). 

The effect compiler in XNA Game Studio does not include the disassembler, but does support direct 
output of HLSL to binaries the Xenos can run. This tool, combined with the shader opcode 
information, should be plenty to get simple shaders going. 

tmbinc’s gpu code / ‘gpu-0.0.5.tar.gz’ 

Absolutely incredible piece of reversing here, amounting to the construction of an almost complete API 
for the Xenos GPU. Even includes information about how the Xbox-specific vfetch instruction is 
implemented. When it comes to processing the command buffers, this code will be critical to quickly 
getting things normalized. 

Cxbx 

Once thought to be a myth, Cxbx is an Xbox 1 emulator capable of running retail games. A very 
impressive piece of work, its code provides insights into the 360 by way of the Xbox 1 having a very 
similar NT-like kernel. Although Cxbx had an easier life by virtue of being able to serve as mainly a 
runtime library and patching system (most of the x86 code is left untouched), the details of a lot of the 
NT-like APIs are very interesting. Through some research it seems like a lot have changed between the 
Xbox 1 and the 360 (almost enough so to make me believe there was a complete rewrite in-between), 
some of the finer differences between things like security handles and such should be consistent. 

abgx360 

Although it may be some of the worst C I’ve ever seen, the raw amount of information contained 
within is mind boggling – everything one needs to read discs and most of the files on those discs (and 
the meanings of all of the data) reside within the single-file, 860KB, 16000 line code. 

xextool (xor37h/Hitmen) 

There are many ‘xextool’s out there, but this version written way back in 2006 is one of the few that 
does the full end-to-end XEX decryption and has source available. Having not been updated in half a 
decade (and having never been fully developed), it cannot decode modern XEX files but does have a 
lot of what abgx360 does in a much easier-to-read form. 



XexTool (xorloser) 

The best ‘xextool’ out there, this command line app does quite a bit. For my purposes it’s interesting 
because it allows the dumping of the inner executable from XEX files along with a .idc file that IDA 
can use to resolve import names. By using this it’s possible to get a pretty decent view of files in IDA 
and makes reversing much easier. Unfortunately (for me), xorloser has never released the code and it 
sounds like he never will. 

PPCAltivec IDA plugin (xorloser) 

Another tool released by xorloser (originally from Dean Ashton), this IDA plugin adds support for all 
of the Altivec/VMX instructions used by the 360 (and various other PPC based consoles). Required 
when looking at real code, and when going to implement the decoder for these instructions the source 
(included) will prove invaluable, as most of the opcodes are undocumented. 

Building an Xbox 360 Emulator, part 5: XEX Files 
I thought it would be useful to walk through a XEX file and show what’s all in there so that when I 
continue on and start talking about details of the loader, operating system, and CPU things make a bit 
more sense. There’s also the selfish reason: it’s been 6 months since I last looked at this stuff and I 
needed to remind myself ^_^ 

What’s a XEX? 
XEX files, or more accurately XEX2 files, are signed/encrypted/compressed content wrappers used by 
the 360. ‘XEX’ = Xbox EXecutable, and pretty close to ‘EXE’ – cute, huh? They can contain resources 
(everything from art assets to configuration files) and executable files (Windows PE format .exe files), 
and every game has at least one: default.xex. 

When the Xbox goes to launch a title, it first looks for the default.xex file in the game root (either on 
the disc or hard drive) and reads out the metadata. Using a combination of a shared console key and a 
game-specific key, the executable contained within is decrypted and verified against an embedded 
checksum (and sometimes decompressed). The loader uses some extra bits of information in the XEX, 
such as import tables and section maps, to properly lay out the executable in memory and then jumps 
into the code. 

Of interest to us here is: 

• What	  kind	  of	  metadata	  is	  in	  the	  XEX?	  
• How	  do	  you	  get	  the	  executable	  out?	  
• How	  do	  you	  load	  the	  executable	  into	  memory?	  
• How	  are	  imports	  resolved?	  

The first part of this document will talk about these issues and then I’ll follow on with a quick IDA 
walkthrough for reversing a few functions and making sure the world is sane. 

Getting a XEX File 
Disc Image 

There are tons of ways to get a working disc image, and I’m not going to cover them here. The 
information is always changing, very configuration dependent, and unfortunately due to stupid US laws 
in a grey (or darker) area. Google will yield plenty of results, but in the end you’ll need either a 



modded 360 or a very specific replacement drive and a decent external SATA adapter (cheap ones 
didn’t seem to work for me). 

The rest of this post assumes you have grabbed a valid and legally-owned disc image. 

Extracting the XEX 

Quite a few tools will let you browse around the disc filesystem and grab files, but the most reliable 
and easy to use that I’ve found is wx360. There are some command line ones out there, FUSE versions 
for OSX/etc, and some 360-specific disc imaging tools can optionally dump files. If you want some 
code that does this in a nice way, wait until I open up my github repo and look XEGDFX.c. 

You’re looking for ‘default.xex’ in the root of the disc. For all games this is where the game metadata 
and executable code lies. A small number of games I’ve looked at have additional XEX files, but they 
are often little helper libraries or just resources with no actual code. 

Once you’ve got the XEX file ready it’s time to do some simple dumping of the contents. 

Peeking into a XEX 
The first tool you’ll want to use is xorloser’s XexTool. Grab it and throw both it and the included 
x360_imports.idc file into a directory with your default.xex. 

02/25/2011  10:10 AM         3,244,032 default.xex 12/04/2010  12:25 
AM           173,177 x360_imports.idc 12/07/2010  11:29 PM           
185,856 xextool.exe 

  
XexTool has a bunch of fun options. Start off by dumping the information contained in default.xex 
with the -l flag: 

D:\XexTutorial>xextool.exe -l default.xex XexTool v6.1  -  xorloser 
2006-2010 Reading and parsing input xex file...  Xex Info   Retail   
Compressed   Encrypted   Title Module   XGD2 Only   Uses Game Voice 
Channel   Pal50 Incompatible   Xbox360 Logo Data Present  Basefile 
Info   Original PE Name:   [some awesome game].pe   Load Address:       
82000000   Entry Point:        826B8B48   Image Size:           
B90000   Page Size:             10000   Checksum:           00000000   
Filetime:           4539666C - Fri Oct 20 17:14:36 2006   Stack Size:            
40000 .... a lot more .... 

  
You’ll find some interesting bits, such as the encryption keys (required for decrypting the contained 
executable), basic import information, contained resources, and all of the executable sections. Note that 
the XEX container has the information about the sections, not the executable. We will see later that 
most of the PE header in the executable is bogus (likely valid pre-packaging, but certainly not after). 

Extracting the PE (.exe) 

Next up we will want to crack out the PE executable contained within the XEX by using the ‘-b’ flag. 
Since we will need it later anyway, also add on the ‘-i’ flag to output the IDC file used by IDA. 

D:\XexTutorial>xextool -b default.exe -i default.idc default.xex 
XexTool v6.1  -  xorloser 2006-2010 Reading and parsing input xex 
file... Successfully dumped basefile idc to default.idc Successfully 
dumped basefile to default.exe  Load basefile into IDA with the 



following details DO NOT load as a PE or EXE file as the format is 
not valid File Type:       Binary file Processor Type:  PowerPC: ppc 
Load Address:    0x82000000 Entry Point:     0x826B8B48 

  
Take a second to look at the output and note the size difference in the input .xex and output .exe: 

02/25/2011  10:10 AM         3,244,032 default.xex 08/12/2011  11:04 
PM        12,124,160 default.exe 

  
In this case the XEX file was both encrypted and compressed. When XexTool spits out the .exe it not 
only decompresses it, but also pads in some of the data that was stripped when it was originally shoved 
into the .xex. Thinking about rotational speeds of DVDs and the data transfer rate, a 4x compression 
ratio is pretty impressive (and it makes me wonder why all PE’s aren’t packed like this…). 

PE Info 

You can try to peek at the executable but the text section is PowerPC and most Microsoft tools shipped 
to the public don’t support even looking at the headers in a PPC PE. Luckily there are some 3rd party 
tools that do a pretty good job of dumping most of the info. Using Matt Pietrek’s pedump you can get 
the headers: 

D:\XexTutorial>pedump /B /I /L /P /R /S default.exe > default.txt 

  
Check out the results and see the PE headers. Note that most of them are incorrect and (I imagine) 
completely ignored by the real 360 loader. For example, the data directories and section table have 
incorrect addresses, although their sizes are fairly accurate. During XEX packing a lot of reorganizing 
and alignment is performed, and some sections are removed completely. 

The two most interesting bits in the resulting file from a reversing perspective are the imports table and 
the runtime function table. The imports table data referenced here is pretty bogus, and instead the 
addresses from the XEX should be used. The Runtime Function Table, however, has valid addresses 
and provides a useful resource: addresses and lengths of most methods in the executable. I’ll describe 
both of these structures in more detail later. 

Loading a XEX 
[I'll patch this up once I open the github repo, but for future reference XEXEX2LoadFromFile, 
XEXEX2ReadImage, and XEPEModuleLoadFromMemory are useful] Now that’s possible to get a 
XEX and the executable it contains, let’s talk about how a XEX is loaded by the 360 kernel. 

Sections 

Take a peek at the ‘-l’ output from XexTool and down near the bottom you’ll see ‘Sections’. What 
follows is a list of all blocks in the XEX, usually 64KB chunks (0×10000), and their type: 

Sections     0) 82000000 - 82010000 : Header/Resource     1) 82010000 
- 82020000 : Header/Resource -- snip --    12) 820C0000 - 820D0000 : 
Header/Resource    13) 820D0000 - 820E0000 : Header/Resource    14) 
820E0000 - 820F0000 : Code    15) 820F0000 - 82100000 : Code -- snip 
--   108) 826C0000 - 826D0000 : Code   109) 826D0000 - 826E0000 : 
Code   110) 826E0000 - 826F0000 : Data   111) 826F0000 - 82700000 : 
Data .... and many more .... 



  
Usually they seem to be laid out as read-only data, code, and read-write data, and always grouped 
together. All of the fancy sections in the PE are distilled down to these three types, likely due to the 
fact that the 360 has these three memory protection modes. Everything is in 64KB chunks because that 
is the allocation granularity for the memory pages. Those two things together explain why the headers 
in the PE don’t match up to reality – the tool that takes .exe -> .xex and does all of this stuff never fixes 
up the data after it butchers everything. When it comes to actually loading XEX’s, all of these 
transformations actually make things easier. Ignoring all of the decryption/decompression/checksum 
craziness, loading a XEX is usually as simple as a mapped file read/memcpy. Much, much faster than a 
normal PE file, and a very smart move on Microsoft’s part. 

Imports 

Both the XEX and PE declare that they have imports, but the XEX ones are correct. Stored in the XEX 
is a multi-level table of import library (such as ‘xboxkrnl.exe’) where each library is versioned and 
then references a set of import entries. You can see the import libraries in the XexTool output: 

Import Libraries     0) xboxkrnl.exe   v2.0.3529.0  (min v2.0.2858.0)     
1) xam.xex        v2.0.3529.0  (min v2.0.2858.0) 

  
It’s way out of scope here to talk about howthe libraries are embedded, but you can check out 
XEXEX2.c in the XEX_HEADER_IMPORT_LIBRARIES bit and later on in 
the XEXEX2GetImportInfos method for more information. In essence, there is a list of ordinals 
exported by the import libraries and the address in the loaded executable at where the resolved import 
should be placed. For example, there may be an import for ordinal 0x26A from ‘xboxkrnl.exe’, which 
happens to correspond to ‘VdRetrainEDRAMWorker’. The loader will place the real address of 
‘VdRetrainEDRAMWorker’ in the location specified in the import table when the executable is loaded. 

The best way to see the imports of an executable (without writing code) is to look at the default.idc file 
dumped previously by XexTool with the ‘-i’ option. For each import library there will be a function 
containing several SetupImport* calls that give the location of the import table entry in the executable, 
the location to place the value in, the ordinal, and the library name. Cross reference x360_imports.idc 
to find the ordinal name and you can start to decode things: 

SetupImportFunc(0x8200085C, 0x826BF554, 0x074, "xboxkrnl.exe"); --> 
KeInitializeSemaphore SetupImportFunc(0x82000860, 0x826BF564, 0x110, 
"xboxkrnl.exe"); --> ObReferenceObjectByHandle 
SetupImportFunc(0x82000864, 0x826BF574, 0x1F7, "xboxkrnl.exe"); --> 
XAudioGetVoiceCategoryVolumeChangeMask 

  
An emulator would perform this process (a bit more efficiently than you or I) and resolve all imports to 
the corresponding functions in the emulated kernel. 

Static Libraries 

An interesting bit of information included in the XEX is the list of static libraries compiled into the 
executable and their version information: 

Static Libraries     0) D3DX9          v2.0.3529.0     1) XGRAPHC        
v2.0.3529.0     2) XONLINE        v2.0.3529.0 .... plus a few more 
.... 

  
In the future it may be possible to build a library of optimized routines commonly found in these 



libraries by way of fingerprint and version information. For example, being able to identify specific 
versions of memcpy or other expensive routines could allow for big speed-ups. 

IDA Pro 
That’s about it for what can be done by hand – now let’s take a peek at the code! 

Getting Setup 

I’m using IDA Pro 6 with xorloser’s PPCAltivec plugin (required) and xorloser’s Xbox360 Xex Loader 
plugin (optional, but makes things much easier). If you don’t want to use the Xex Loader plugin you 
can load the .exe and then run the .idc file to get pretty much the same thing, but I’ve had things go 
much smoother when using the plugin. 

Go and grab a copy of IDA Pro 6, if you don’t have it. No really, go get it. It’s only a foreign money 
wire of a thousand dollars or two. Worth it. It takes a few days, so I’ll wait… 

Install the plugins and fire it up. You should be good to go! Close the wizard window and then 
drag/drop the default.xex file into the app. It’ll automatically detect it as a XEX, don’t touch anything, 
and let it go. Although you’ll start seeing things right away I’ve found it’s best to let IDA crunch on 
things before moving around. Wait until ‘AU: idle’ appears in the bottom left status tray. 

	  

XEX Import Dialog 



	  

IDA Pro Initial View 

Navigating 

XEX files traditionally have the following major elements in this order (likely because they all come 
from the same linker): 

1. Import	  tables	  –	  a	  bunch	  of	  longs	  that	  will	  be	  filled	  with	  the	  addresses	  of	  
imports	  on	  load	  

2. Generic	  read-‐only	  data	  (string	  tables,	  constants/etc)	  
3. Code	  (.text)	  
4. Import	  function	  thunks	  (at	  the	  end	  of	  .text)	  
5. Random	  security	  code	  

IDA and xorloser’s XEX importer are nice enough to organize most things for you. Most functions are 
found correctly (although a few aren’t or are split up wrong), you’ll find the __savegpr/__restgpr 
blocks named for you, and all import thunks will be resolved. 

The Anatomy of an Xbox Executable 
I’m not going to do a full walkthrough of IDA (you either know already or can find it pretty easily), but 
I will show an example that reveals a bit about what the executables look like and how they function. 
It’s fun to see how much you can glean about the tools and processes used to build the executable from 
the output! 

Reversing Sleep 

Starting simple and in a well-known space is generally a good idea. Scanning through the import 
thunks in my executable I noticed ‘KeDelayExecutionThread’. That’s an interesting function because it 
is fairly simple – the perfect place to get a grounding. Almost every game should call this, so look for it 
in yours (your addresses will differ). 

.text:826BF9B4 KeDelayExecutionThread:                 # CODE XREF: 
sub_826B9AF8+5C�p .text:826BF9B4                 li      %r3, 0x5A 
.text:826BF9B8                 li      %r4, 0x5A .text:826BF9BC                 
mtspr   CTR, %r11 .text:826BF9C0                 bctr 



  
All of the import thunks have this form – I’m assuming the loader overwrites their contents with the 
actual jump calls and none of the code here is used. Time to check out the documentation. MSDN 
shows KeDelayExecutionThread as taking 3 arguments and returning one: 

NTSTATUS KeDelayExecutionThread(   __in  KPROCESSOR_MODE WaitMode,   
__in  BOOLEAN Alertable,   __in  PLARGE_INTEGER Interval ); 

  
For a function as core as this it’s highly likely that the signature has not changed between the 
documented NT kernel and the 360 kernel. This is not always the case (especially with some of the 
more complex calls), but is a good place to start. Right click and select ‘Set function type’ (or hit Y) 
and enter the signature: 

int __cdecl KeDelayExecutionThread(int waitMode, int alertable, 
__int64* interval) 

  
Because this is a kernel (Ke*) function it’s unlikely that it is being called by user code directly. Instead, 
one of the many static libraries linked in is wrapping it up (my guess is ‘xboxkrnl’). IDA shows that 
there is one referencing routine – almost definitely the wrapper. Double click it to jump to the call site. 

Now we are looking at a much larger function wrapping the call to KeDelayExecutionThread: 

	  

IDA Pro View of KeDelayExecutionThread wrapper 

Tracing back the parameters to KeDelayExecutionThread, waitMode is always constant but both 
interval and alertable come from the parameters to the function. Note that argument 0 ends up as 
‘interval’ in KeDelayExecutionThread, has special handling for -1, and has a massively large multiplier 
on it (bringing the interval from ms to 100-ns).  Down near the end you can see %r3 being set, which 
indicates that the function returns a value. From this, we can guess at the signature of the function and 
throw it into the ‘Set function type’ dialog: 

int __cdecl DelayWrapper(int intervalMs, int alertable) 

  
We can do one better than just the signature, though. This has to be some Microsoft user-mode API. 
Thinking about what KeDelayExecutionThread does and the arguments of this wrapper, the first 
thought is ‘Sleep’. Win32 Sleep only takes one argument, but SleepEx takes two and matches our 
signature exactly! 



Check out the documentation to confirm: MSDN SleepEx. Pretty close to what we got, right? 

DWORD WINAPI SleepEx(   __in  DWORD dwMilliseconds,   __in  BOOL 
bAlertable ); 

  
Rename the function (hit N) and feel satisfied that you now have one of hundreds of thunks completed! 

	  

Reversed SleepEx 

	  
	  	  

Now do all of the rest, and depth-first reverse large portions of the game code. You now know the hell 
of an emulator author. Hackers have it easy – they generally target very specific parts of an application 
to reverse… when writing an emulator, however, breadth often matters just as much as depth x_x 

Building an Xbox 360 Emulator, part 6: Code 
Translation Techniques 
One of the most important pieces of an emulator is the simulation of the guest processor – it drives 
every other subsystem and is often the performance bottleneck. I’m going to spend a few posts looking 
into how to build a (hopefully) fast and portable PowerPC simulator. 

Overview 
At the highest level the emulator needs to be able to take the original PowerPC instructions and run 
them on the host processor. These instructions come in the form of a giant assembled binary instruction 
stream loaded into memory – there is no concept of ‘functions’ or ‘types’ and no flow control 
information. Somehow, they must be quickly translated into a form the host processor can understand, 
either one at a time or in batches. There are many techniques for doing this, some easy (and slow) and 
many hard (and fastish). I’ve learned through experience that  that the first choice one makes is almost 
always the wrong one and a lot of iteration is required to get the right balance. 

The techniques for doing this translation parallel the techniques used for systems programming. 
There’s usually a component that looks like an optimizing compiler, a linker, some sort of module 
format (even if just in-memory), and an ABI (application binary interface – a.k.a. calling convention). 



The tricky part is not figuring out how these components fit together but instead deciding how much 
effort to put into each one to get the right performance/compatibility trade off. 

I recommend checking out Virtual Machines by James Smith and Ravi Nair for a much more in-depth 
overview of the field of machine emulation, but I’ll briefly discuss the major types used in console 
emulators below. 

Interpreters 

Implementation: Easy 
Speed: Slow 

Examples: BASIC,	  most	  older	  emulators 

Interpreters are the simplest of the bunch. They are basically exactly what you would build if you 
coded up the algorithm describing how a processor works. Typically, they look like this: 

• While	  running:	  	  
o Get	  the	  next	  instruction	  from	  the	  stream	  
o Decode	  the	  instruction	  
o Execute	  the	  instruction	  (maybe	  updating	  the	  address	  of	  the	  next	  

instruction	  to	  execute)	  

There are bits that make this a bit more complex than this, but generally they are implementation 
details about the guest CPU (how does it handle jumping around, etc). Ignoring the code that actually 
executes each instruction, a typical interpreter can be just a few dozen lines of easy-to-read, easy-to-
maintain code. That’s why when performance doesn’t matter you see people go with interpreters – no 
one wants to waste time building insanely complex systems when a simple one will work (or at least, 
they shouldn’t!). 

Even when an interpreter isn’t fast enough to run the guest code at sufficient speeds there are still many 
advantages to use one. Mainly, due to the simplicity of the implementation, it’s often possible to ensure 
correctness without much trouble. A lot of emulation projects start of with interpreters just to ensure all 
the pieces are working and then later go back and add a more complex CPU core when things are all 
verified correct. Another great advantage is that it’s much easier to build debuggers and other analysis 
tools, as things like stepping and register inspection can be one or two lines in the main execution loop. 

Unfortunately for this project, performance does matter and an interpreter will not suffice. I would like 
to build one just to make it easier to verify the correctness of the instruction set, however even with as 
(relatively) simple it is there is still a large time investment that may never pay off. 

Pros	  

• Easy	  to	  implement	  
• Easy	  to	  build	  debuggers/step-‐through	  
• Can	  get	  something	  running	  fairly	  fast	  
• Snapshotting/save	  states	  trivial	  to	  implement	  

Cons	  

• Several	  orders	  of	  magnitude	  slower	  than	  the	  host	  machine	  (think	  100-‐
1000x)	  



JITs 

Implementation: Sort-‐of	  easy 
Speed: Sort-‐of	  fast 

Examples: Modern	  Javascript,	  .NET/JVM,	  most	  emulators 

This technique is the most common one used in emulators today. It’s much more complex than an 
interpreter but still relatively easy to get implemented. At a high level the flow is the same as in an 
interpreter, but instead of operating on single instructions the algorithm handles basic blocks, or a short 
sequence of instructions excluding flow control (jumps and branches). 

• While	  running:	  	  
o Get	  the	  next	  address	  to	  process	  
o Lookup	  the	  address	  in	  the	  code	  cache	  
o If	  cached	  basic	  block	  present:	  	  

§ Execute	  cached	  block	  
o Otherwise:	  	  

§ Translate	  the	  basic	  block	  
§ Store	  in	  code	  cache	  
§ Execute	  block	  

The emulator spins in this loop and in the steady state is doing very little other than lookups in the 
cache and calls of the cached code. Each basic block runs until the end and then returns back to this 
control method to let it decide where to go next. 

There is a bit of optimization that can be done here, but because the unit of work is a basic block a lot 
don’t make sense or can’t be used to full advantage. The best optimizations often require much more 
context than a couple instructions in isolation can give and the most expensive code is usually the stuff 
in-between the basic blocks, not inside of it (jumps/branches/etc). 

Compared to the next technique this simple JIT does have a few advantages. Namely, if the guest 
system is allowed to dynamically modify code (think of a guest running a guest) this technique will get 
the best performance with as little penalty for regeneration as possible. On the Xbox 360, however, it is 
impossible to dynamically generate code so that’s a whole big area that can be ignored. 

In terms of the price/performance ratio, this is the way to go. The analysis is about as simple as the 
interpreter, the translation is straightforward, and the code is still pretty easy to debug. There’s a 
performance penalty (that can often be eliminated with tricks) for the cache lookups and dynamic 
translation, but it’s still much faster than interpreting. 

That said, it’s still not fast enough. To emulate 3 3GHz processors with an advanced instruction set on 
x86-64, every single cycle needs to count. It’s also boring – I’ve built a few before, and building 
another would just be going through the motions. 

Pros 

• Pretty	  fast	  (10-‐100x	  slower	  than	  native)	  
• Pretty	  simple	  
• Allows	  for	  recompilation	  if	  code	  is	  changed	  on-‐the-‐fly	  



Cons	  

• Few	  optimizations	  possible	  
• Debugging	  is	  harder	  

Recompilers / ‘Advanced’ JITs 

Implementation: Hard 
Speed: Fastest	  possible 

Examples: V8,	  .NET	  ngen/AOT 

Recompilers (often referred to as ‘binary translation’ in literature) are the holy grail of emulation. The 
advantages one gets from being able to do full program analysis, ahead-of-time compilation, and 
trivially debuggable code cannot be beat… except by how hard they usually are to write. 

Where as an interpreter works on individual instructions and a simple JIT works on basic blocks, a 
recompiler works on methods or even entire programs. This allows for complex optimizations to be 
used that, knowing the target host architecture, can yield even faster code than the original instruction 
stream. 

I split this section between ‘advanced’ JITs and recompilers, but they are really two different things 
implemented in largely the same way. An advanced JIT (as I call it) is a simple JIT extended to work 
on methods and using some simple intermediate representation (IR) that allows for optimizations, but 
at the end of the day is still dynamically compiling code at runtime on demand. A full recompiler is 
usually a system that does a lot of the same analysis and uses a similar intermediate representation, but 
does it all at once and before attempting to execute the code. In some ways a JIT is easier to think 
about (still operating on small units of code, still doing it inside the program flow), but in many others 
the recompiler simplifies things. For example, being able to verify an entire program is correct and 
optimize as much as possible before the guest executes allows for much better tooling to be created. 
Depending on what library/tools are being used you can also get reflection, debugging, and things 
usually reserved for original source-level programming like profile-guided optimization. 

The hard part of this technique is actually analyzing the instruction stream to try to figure out how the 
code is organized. Tools like IDA Pro will do this to a point, but are not meant to be used to generate 
executable code. How this process is normally done is largely undocumented – either because it’s 
considered a trade secret or no one cares – but I puzzled out some of the tricks and used them to build 
my PSP emulator. There I implemented an advanced JIT, generating code on the fly, but that’s only 
because of the tools that I had at the time and not really knowing what I wanted. 

Recompilers are very close to full-on decompilers. Decompilers are designed to take machine 
instructions up through various representations and (hopefully) yield human-readable high level source 
code. They are constructed like a compiler but in reverse: compilers usually contain a frontend (input 
source code -> intermediate representation (IR)), optimizers/analyzers, and a backend (IR -> machine 
code (MC)); decompilers have a frontend (MC -> IR), optimizers/analyzers, and a backend (IR -> 
source, like C). The decompiler frontend is fairly trivial, the analysis much more complex, and the 
backend potentially unsolvable. What makes recompilers interesting is that at no point do they aim to 
high human-readable output – instead, a recompiler has a frontend like a decompiler (MC -> IR), 
analyzers like a decompiler, optimizers like a compiler, and a backend like a compiler (IR -> MC). 

Pros	  

• As	  close	  to	  native	  as	  possible	  (1-‐10x	  slower,	  depending	  on	  architectures)	  
• No	  translation	  overhead	  while	  running	  (unless	  desired)	  
• Debuggable	  using	  real	  tools	  



• Still	  pretty	  novel	  (read:	  fun!)	  

Cons	  

• Incredibly	  hard	  to	  write	  
• Can’t	  handle	  dynamically	  modifiable	  code	  (well)	  

Building a Recompiler 
There are many steps down the path of building a recompiler. Some people have tried building general 
purpose binary translation toolkits, but that’s a lot of work and requires a lot of good design and 
abstraction. For this project I just want to get something working and I have learned that after I’m done 
I will never want to use the code again – by the time I attempt a project like this again, I will have 

learned enough to consider it all garbage I’ll be focusing on a Power PC frontend and reusing the 
PPC instruction set (+ tags) as my intermediate representation (IR) – this simplifies a lot of things and 
allows me to bake assumptions about the source platform into the entire stack without a lot of nasty 
hacks. One design concession I will be making is letting the backend (IR -> MC) be pluggable. From 
experience, the frontend rarely changes between different implementations while the backend varies 
highly – source PPC instructions are source PPC instructions regardless of whether you’re 
implementing an interpreter, a JIT, or a recompiler. For now I’m planning on using LLVM for the 
backend (as it also gives me some nice optimizers), but may re-evaluate this later on and would like not 
to have to reimplement the frontend. 

Frontend (MC -> IR) 

Assuming that the source module has already been loaded (see previous posts on loading XEX files), 
the frontend stage includes a few major components: 

• Disassembler	  
• Basic	  block	  slicing	  
• Control	  Flow	  Graph	  (CFG)	  construction	  
• Method	  recognition	  

From	  this	  stage	  a	  skeleton	  of	  the	  program	  can	  be	  generated	  that	  should	  fairly	  
closely	  model	  the	  original	  structure	  of	  the	  code.	  This	  includes	  a	  (mostly	  correct)	  
list	  of	  methods,	  tagged	  references	  to	  global	  variables,	  and	  enough	  information	  to	  
identify	  the	  control	  flow	  in	  any	  given	  method.	  

When working on my PSP emulator I didn’t factor out the frontend correctly and ended up having to 
reimplement it several times. For this project I’ll be constructing this piece myself and ensuring that it 
is reusable, which will hopefully save a lot of time when experimenting with different backends. 

Disassembler	  

A simple run-of-the-mill disassembler that is able to take a byte stream and produce an instruction 
stream. There are a few table generation toolkits out there that can make this process much faster at 
runtime but initially I’ll be sticking with the tried and true chained table lookup. A useful feature to add 
to early disassemblers is pretty printing of the instructions, which enables much better output from later 
parts of system and makes things significantly easier to debug. 



Basic	  Block	  Slicing	  /	  Control	  Flow	  Graph	  Construction	  /	  Method	  Recognition	  
Basic	  blocks	  in	  this	  context	  refer	  to	  a	  sequence	  of	  instructions	  that	  starts	  at	  an	  
instruction	  that	  is	  jumped	  to	  by	  another	  basic	  block	  and	  ends	  at	  the	  first	  flow	  
control	  instruction.	  This	  gets	  the	  instruction	  stream	  into	  a	  form	  that	  enables	  the	  
next	  step.	  

Once basic blocks are identified they can be linked together to form a Control Flow Graph (CFG). 
Using the CFG it is possible to identify unique entry and exit points of portions of the graph and call 
those ‘methods’. Sometimes they match 1:1 with the original input code, but other times due to 
optimizing compilers (inlining, etc) may not – it doesn’t matter to a recompiler (but does to a 
decompiler). Usually the process of CFG generation is combined with the basic block slicing step and 
executed in multiple passes until all edges have been identified. 

There are some tricky details here that make this stage not 100% reliable, namely function pointers. 
Simple C function pointer passing (callbacks/etc) as well as things like C++ vtables can prevent a 
proper whole-program CFG from being constructed. In these cases, where the target code may appear 
to have never been called (as there were no jumps/branches into it) it is important to have a method 
recognition heuristic to identify them and bring them into the recompiled output. The first stage of this 
is scanning for holes in the code address space: if after all processing has been done there are still 
regions that are not assigned to methods they are now suspicious – it’s possible that the contents of the 
holes are actually data or padding and it’s important to have a set of rules to follow to identify that. 
Popular heuristics are looking for function prologues and ensuring a region has all valid instructions. 
Once found the recompiler isn’t done, though, as even if the method gets to the output there is still no 
way to connect it up to the original callers accessing it by pointer. One way to solve this is to make all 
call-by-pointer sites instead look up the function in a table of all functions in the module. It can be 
significantly slower than the native call, but caches can help. 

Analysis	  

The results of the frontend are already fairly usable, however to generate better output the recompiler 
needs to do a bit of analysis on the source instructions. What comes out of the frontend is a literal 
interpretation of the source and as such is missing a lot of the extra information that the backend can 
potentially use to optimize the output. There are hundreds of different things that can be done at this 
stage as required, but for recompilers there are a few important ones: 

• Data	  Flow	  Analysis	  (DFA)	  
• Control	  Flow	  Analysis	  (CFA)	  

Data	  Flow	  Analysis	  

Since PPC is a RISC architecture there is often a large number of instructions that work on 
intermediate registers just for the sake of accomplishing one logical instruction. For example, look at 
this bit of disassembly (what would come out of the frontend): 

.text:8210E77C                 lwz     %r11, 0x54(%r31) 

.text:8210E780                 lwz     %r9, 0x90+var_40(%sp) 

.text:8210E784                 lwz     %r10, 0x50(%r31) 

.text:8210E788                 mullw   %r11, %r11, %r9 .text:8210E78C                 
add     %r11, %r11, %r10 .text:8210E790                 lwz     %r10, 
0x90+var_3C(%sp) .text:8210E794                 add     %r11, %r11, 
%r10 .text:8210E798                 stw     %r11, 0(%r29) 

A simple decompilation of this is: 

var x = (r31)[0x54]; var y = (sp)[0x90+var_40]; var z = (r31)[0x50]; 
x *= y; x += z; z = (sp)[0x90+var_3C]; x += z; (r29)[0] = x; 



If you used this as output in your recompiler, however, you would end up with many more instructions 
being executed than required. A simple data flow analysis would enable result propagation (x = x * y + 
z, etc) and SSA (knowing that the second lwz into %r10 is a different use of z). Performing this step 
would allow an output that is much more simple and easier for down-stream optimization passes to 
deal with: 

(r29)[0] = ((r31)[0x54] * (sp)[0x90+var_40]) + (r31)[0x50] + 
(sp)[0x90+var_3C]; 

Control	  Flow	  Analysis	  

With a constructed Control Flow Graph it’s possible to start trying to identify what the original flow 
control constructs were. It’s not required to do this in a recompiler, as the output of the compiler will 
still be correct if passed through directly to the backend, however the more information that can be 
provided to the backend the better. Compilers will often change for- and while-loops into post-tested 
loops (do-while) or specific processor forms, such as the case of PPC which has a special branch 
counter instruction. By inspecting the structure of the graph it’s possible to figure out what are loops 
vs. conditional branches, and just where the loops are and what basic blocks are included inside the 
body of the loop. By encoding this information in the IR the backend can do better local variable 
allocation by knowing what variables are accessible from which pieces of code, better code layout by 
knowing which side of the branch/loop is likely to be executed the most, etc. 

CFA is also required for correct DFA – you could imagine scenarios where registers or locals are set 
before a jump and changed in the flow. You would not be able to perform the data propagation or 
collapsing without knowing for certain what the potential values of the register/local could be at any 
point in time. 

Backend (IR -> MC) 

I’ll be doing an entire post (or more) about what I’m planning on doing here for this project, but for 
completeness here’s an overview: 

Backends can vary in both type and complexity. The simplest backend is an interpreter, executing the 
instruction stream produced by the frontend one instruction at a time (and ignoring most of the 
metadata attached). JITs can use the information to produce either simple basic block-based code 
chunks or entire method chunks. Or, as I’m aiming for, a compiler/linker can be used to do a whole 
bunch more. 

Right now I’m targeting LLVM IR (plus some custom code) for the backend. This enables me to run 
the entire LLVM optimization pass over the IR to produce some of the best possible output, use the 
LLVM interpreter or JIT to get runtime translation, or the offline LLVM tools to generate executables 
that can be run on the host machine. The complex part of this process is getting the IR used in the rest 
of this process into LLVM IR, which is at a much higher level than machine instructions. Luckily 
others have already used LLVM for purposes like this, so at least it’s possible! 

	  


